Please check the examination de	tails below before ente	ring your candidate information
Candidate surname		Other names
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Thursday 16 May 2019		
Afternoon	Paper Re	eference 8FM0-21
Further Mathe	matics	
Advanced Subsidiary Further Mathematics options 21: Further Pure Mathematic (Part of options A, B, C and D	s 1	
You must have: Mathematical Formulae and St	atistical Tables (Gr	een), calculator

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 40. There are 5 questions.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1. (a) Write down the *t*-formula for $\sin x$.

(1)

- (b) Use the answer to part (a)
 - (i) to find the exact value of $\sin x$ when

$$\tan\left(\frac{x}{2}\right) = \sqrt{2}$$

(ii) to show that

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

(4)

(c) Use the *t*-formulae to solve for $0 < \theta \le 360^{\circ}$

$$7\sin\theta + 9\cos\theta + 3 = 0$$

giving your answers to one decimal place.

(4)

Question 1 continued	
(Total	al for Question 1 is 9 marks)

2. A student was set the following problem.

Use algebra to find the set of values of x for which

$$\frac{x}{x-24} > \frac{1}{x+11}$$

The student's attempt at a solution is written below.

$$x(x-24)(x+11)^{2} > (x+11)(x-24)^{2}$$

$$x(x-24)(x+11)^{2} - (x+11)(x-24)^{2} > 0$$

$$(x-24)(x+11)[x(x+11) - x - 24] > 0$$

$$(x-24)(x+11)[x^{2} + 10x - 24] > 0$$

$$(x-24)(x+11)[x+12)(x-2) > 0$$

$$x = 24, x = -11, x = -12, x = 2$$

$$\{x \in \mathbb{R} : -12 < x < -11\} \cup \{x \in \mathbb{R} : 2 < x < 24\}$$

Line 3

Line 7

There are errors in the student's solution.

- (a) Identify the error made
 - (i) in line 3
 - (ii) in line 7

(2)

(b) Find a correct solution to this problem.

(4)

Question 2 continued	
	(Total for Question 2 is 6 marks)

3. Julie decides to start a business breeding rabbits to sell as pets.

Initially she buys 20 rabbits. After t years the number of rabbits, R, is modelled by the differential equation

$$\frac{\mathrm{d}R}{\mathrm{d}t} = 2R + 4\sin t \qquad t > 0$$

Julie needs to have at least 40 rabbits before she can start to sell them.

Use two iterations of the approximation formula

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_n \approx \frac{y_{n+1} - y_n}{h}$$

to find out if, according to the model, Julie will be able to start selling rabbits after 4 months.

	(7)

Question 3 continued	
(Total for Q	uestion 3 is 7 marks)

Figure 1

Figure 1 shows a sketch of a solid doorstop made of wood. The doorstop is modelled as a tetrahedron.

Relative to a fixed origin O, the vertices of the tetrahedron are A (2, 1, 4), B (6, 1, 2), C (4, 10, 3) and D (5, 8, d), where d is a positive constant and the units are in centimetres.

(a) Find the area of the triangle ABC.

(4)

Given that the volume of the doorstop is 21 cm³

(b) find the value of the constant *d*.

(4)

Question 4 continued	

Question 4 continued

Question 4 continued	
	(Total for Question 4 is 8 marks)

Figure 2

Figure 2 shows a sketch of part of the rectangular hyperbola H with equation

$$xy = c^2 \qquad x > 0$$

where c is a positive constant.

The point $P\left(ct, \frac{c}{t}\right)$ lies on H.

The line l is the tangent to H at the point P.

The line l crosses the x-axis at the point A and crosses the y-axis at the point B.

The region R, shown shaded in Figure 2, is bounded by the x-axis, the y-axis and the line l.

Given that the length OB is twice the length of OA, where O is the origin, and that the area of R is 32, find the exact coordinates of the point P.

(10)

Question 5 continued	

Question 5 continued	

Question 5 continued		

Question 5 continued		
	(Total for Question 5 is 10 marks)	
TOTAL FOR FURTHER PURE	E MATHEMATICS 1 IS 40 MARKS	

